Exercises om Information Theory and Entropy, EPFL 2023

1 Few useful equalities and inequalities on Entropies

In what follows, we shall denote the entropy of a random variable X with a distribution
px(z) as
H(X) = —/da: px () logpx ()

while for many variables, we have e.g

H(X,Y) = / dzdy px.y (z,y) 1og px.y (@, )

The conditional entropy is defined as
HOXTY) = — [ dady pxcy (e, log iy (el

1.1 Entropy of a Gaussian variable

Show that the entropy of a Gaussian variable sampled from N (m, A) is given by
1
H(X) = B log 2meA

1.2 Gibbs inequality

Given two probability distributions p(x) and ¢(z), the relative entropy, or Kullback-
Leibler divergence, is defined as

Dxw(p,q) = / dz p(z)log Z;g:;

Using the fact that Inz < 2 — 1, show the ”Gibbs inequality” that states that Dkr,(p, q) > 0.

1.3 Mutual information

The mutual information between two (potentially) correlated variables X and Y is defined
as the Kullback-Leibler divergence between their joint distribution and the factorized one.
In other words, it reads

pxy(Z,y)

I[(X;Y) = /d:z:dy pxy(z,y)log px(z) py (v)

Show that the mutual information satisfies the following chain rules :
I(X;Y)=H(X)-H(X|Y) =HY) - HY|X)

where (show it) the so-called conditional entropy H(X|Y') can be also be expressed as

H(X|Y) = — / dy py (¥) / dz pyy (2ly) log px |y (z]y)



2 The I-MMSE Theorem for scalars

Consider an unknown variable X*, distributed as Px(x). It is observed through a noisy
Gaussian channel so that we are given
Y =VAX*+Z (1)

where Z is distributed as N(0,1). We remind that the mutual information between X and
Y is given by
Px Y(xa y)
IX;Y:/d:z:dP z,y)log ——F———~ 2
(X3Y) yPxy (@ y)los 5 ) (2)

1. Consider X distributed according to the posterior Pyy (X[Y) (where Y is derived
from X*). Using I(X;Y) = H(Y) — H(Y|X) show that the mutual information is

given by
e z—VA2)? g
I(X;Y) = —Eylog/deX(z:)m _ 510g27re (3)
= cst—Eg 1Og/dﬂfPX(x)e—;‘(m*_x)2—z\/X(w*_x) @

2. We now define the Gibbs average (.), for a given z, z*, such that

_ fdwf(x)PX(x)e‘%(x*—x)2—2ﬁ(z*—g;)

(f(x)) fdeX(x)e—%(:c*—x)z—zﬁ(m*—z)

()

Denoting m = E[(z)z*], ¢ = E[(z)?] and p = E[(2*)?][] and using Stein’s lemma
E.zf(z) = E,f'(z) prove the so-called I-MMSE theorem (Guo, Shamai, Verdu '05) :

dlr 1 1

* — 1 —
7 = 5B a((@) —2")? = MMSE = S (p—m) (6)

where MMSE stands for ”Minimal Mean Squared Error”.

3 The I-MMSE Theorem for matrices

Consider an unknown vector X* € R? with each element sample X} from Px(z). We
construct a rank-one matrix M = X*(X*)T. The matrix M is observed through a noisy

channel, so we are given
A
Y = \/;M +Z

where Z is a symmetric random matrix with element sampled through N(0,1).

1. The minimal error in reconstruction of the matrix (the M-MMSE) is given by using
the posterior means as an estimator M = IEX|Y[X(X)T] = (X(X)"). Show that

the Matrix-MMSE, defined as Erz 3 >, (Mij — M;;)?, is given by p? — m?, with
p=E[X7] and m? = E[((X;) X})?].
2. Show that the mutual information is given by

Ap? 1
I(Y, X) = 2= —By[- log Z(Y)] (7)
with Z(Y) = Ex[exp — ¥,; —5p270] + Jsia;Yig).

3. Proceed again as in the previous exercise and prove the matrix I-MMSE theorem :

1
WY, X)= ZMatrix—MMSE

1. Clue : remember the Nishimori relation ¢ = m, and that we proved MMSE=p — m in class!
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