
Exercises om Information Theory and Entropy, EPFL 2023

1 Few useful equalities and inequalities on Entropies

In what follows, we shall denote the entropy of a random variable X with a distribution
pX(x) as

H(X) = −
∫

dx pX(x) log pX(x)

while for many variables, we have e.g

H(X,Y ) = −
∫

dxdy pX,Y (x, y) log pX,Y (x, y)

The conditional entropy is defined as

H(X|Y ) = −
∫

dxdy pX,Y (x, y) log pX|Y (x|y)

1.1 Entropy of a Gaussian variable

Show that the entropy of a Gaussian variable sampled from N (m,∆) is given by

H(X) =
1

2
log 2πe∆

1.2 Gibbs inequality

Given two probability distributions p(x) and q(x), the relative entropy, or Kullback-
Leibler divergence, is defined as

DKL(p, q) =

∫
dx p(x) log

p(x)

q(x)

Using the fact that lnx ≤ x−1, show the ”Gibbs inequality” that states that DKL(p, q) ≥ 0.

1.3 Mutual information

The mutual information between two (potentially) correlated variablesX and Y is defined
as the Kullback-Leibler divergence between their joint distribution and the factorized one.
In other words, it reads

I(X;Y ) =

∫
dxdy pX,Y (x, y) log

pX,Y (x, y)

pX(x) pY (y)

Show that the mutual information satisfies the following chain rules :

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

where (show it) the so-called conditional entropy H(X|Y ) can be also be expressed as

H(X|Y ) = −
∫

dy pY (y)

∫
dx pX|Y (x|y) log pX|Y (x|y)
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2 The I-MMSE Theorem for scalars

Consider an unknown variable X∗, distributed as PX(x). It is observed through a noisy
Gaussian channel so that we are given

Y =
√
λX∗ + Z (1)

where Z is distributed as N (0, 1). We remind that the mutual information between X and
Y is given by

I(X;Y ) =

∫
dxdyPX,Y (x, y) log

PX,Y (x, y)

PX(x)PY (y)
(2)

1. Consider X distributed according to the posterior PX|Y (X|Y ) (where Y is derived
from X∗). Using I(X;Y ) = H(Y ) − H(Y |X) show that the mutual information is
given by

I(X;Y ) = −Ey log

∫
dxPX(x)

e−
1
2
(y−

√
λx)2

√
2π

− 1

2
log 2πe (3)

= cst− Ex∗,z log

∫
dxPX(x)e−

λ
2
(x∗−x)2−z

√
λ(x∗−x) (4)

2. We now define the Gibbs average ⟨.⟩, for a given z, x∗, such that

⟨f(x)⟩ =
∫
dxf(x)PX(x)e−

λ
2
(x∗−x)2−z

√
λ(x∗−x)∫

dxPX(x)e−
λ
2
(x∗−x)2−z

√
λ(x∗−x)

(5)

Denoting m = E[⟨x⟩x∗], q = E[⟨x⟩2] and ρ = E[(x∗)2] 1 and using Stein’s lemma
Ezzf(z) = Ezf

′(z) prove the so-called I-MMSE theorem (Guo, Shamai, Verdu ’05) :

dI

dλ
=

1

2
Ex∗,z(⟨x⟩ − x∗)2 =

1

2
MMSE =

1

2
(ρ−m) (6)

where MMSE stands for ”Minimal Mean Squared Error”.

3 The I-MMSE Theorem for matrices

Consider an unknown vector X∗ ∈ Rd, with each element sample X∗
i from PX(x). We

construct a rank-one matrix M = X∗(X∗)T . The matrix M is observed through a noisy
channel, so we are given

Y =

√
λ

d
M + Z

where Z is a symmetric random matrix with element sampled through N (0, 1).

1. The minimal error in reconstruction of the matrix (the M-MMSE) is given by using
the posterior means as an estimator M̂ = EX|Y [X(X)T ] = ⟨X(X)T ⟩. Show that

the Matrix-MMSE, defined as EM,Z
1
d2

∑
ij(M̂ij − Mij)

2, is given by ρ2 − m2, with

ρ = E[X2
i ] and m2 = E[(⟨Xi⟩X∗

i )
2].

2. Show that the mutual information is given by

I(Y,X) =
λρ2

4
− EY [

1

d
logZ(Y )] (7)

with Z(Y ) = EX [exp−
∑

i≤j −
λ
2nx

2
ix

2
j +

λ√
n
xixjYij ].

3. Proceed again as in the previous exercise and prove the matrix I-MMSE theorem :

∂λI(Y,X) =
1

4
Matrix-MMSE

1. Clue : remember the Nishimori relation q = m, and that we proved MMSE=ρ−m in class !
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