Replica method for the p-spin model

PHYS-642

March 22, 2023

Contents

1 Setting 1
2 Powers of the partition function 2
3 Reminders on the Dirac distribution 3

5 Saddle point 4

7	Taking the limit	5

8 Extremization 6

9 Link with the REM	6

1 Setting

The Hamiltonian for the p-spin model is

$$
\mathcal{H}(\mathbf{S})=-\sum_{i_{1}<\cdots<i_{p}} J_{i_{1}, \ldots, i_{p}} S_{i_{1}} \cdots S_{i_{p}}
$$

where the interaction terms follow a Gaussian distribution with standard deviation $\sigma=\sqrt{\frac{p!}{2 N^{p-1}}}$:

$$
\mathbb{P}(J)=\sqrt{\frac{N^{p-1}}{\pi p!}} \exp \left(-\frac{N^{p-1}}{p!} J^{2}\right)
$$

Remember the replica trick: as $n \rightarrow 0$,

$$
Z^{n}=\mathrm{e}^{n \log Z}=1+n \log Z+o(n)
$$

which gives us

$$
\mathbb{E}[\log Z]=\lim _{n \rightarrow 0} \frac{\mathbb{E}\left[Z^{n}\right]-1}{n}
$$

This explains why we want to compute powers of Z, and their expectation with respect to the disorder \mathbf{J}. This will in turn allow us to deduce the free entropy density

$$
\begin{equation*}
\Phi=\lim _{N \rightarrow \infty} \frac{\mathbb{E}[\log Z]}{N} \quad \text { so } \quad \Phi_{\mathrm{RS}}=\lim _{N \rightarrow \infty} \lim _{n \rightarrow 0} \frac{\mathbb{E}\left[Z^{n}\right]-1}{n N} \tag{1}
\end{equation*}
$$

2 Powers of the partition function

$$
\begin{aligned}
Z^{n} & =\left(\sum_{\mathbf{S} \in\{ \pm 1\}^{N}} \exp [-\beta \mathcal{H}(\mathbf{S})]\right)^{n}=\sum_{\mathbf{S}^{1}, \ldots, \mathbf{S}^{n}} \exp \left[-\beta \sum_{a=1}^{n} \mathcal{H}\left(\mathbf{S}^{a}\right)\right] \\
& =\sum_{\mathbf{S}^{1}, \ldots, \mathbf{S}^{n}} \exp \left[\beta \sum_{i_{1}<\cdots<i_{p}} J_{i_{1}, \ldots, i_{p}} \sum_{a=1}^{n} S_{i_{1}}^{a} \cdots S_{i_{p}}^{a}\right] \\
& =\sum_{\mathbf{S}^{1}, \ldots, \mathbf{S}^{n}} \prod_{i_{1}<\cdots<i_{p}} \exp \left[\beta J_{i_{1}, \ldots, i_{p}} \sum_{a=1}^{n} S_{i_{1}}^{a} \cdots S_{i_{p}}^{a}\right]
\end{aligned}
$$

We take the expectation with respect to the disorder, using the independence of the $J_{i_{1}, \ldots, i_{p}}$:

$$
\mathbb{E}\left[Z^{n}\right]=\sum_{\mathbf{S}^{1}, \ldots, \mathbf{S}^{n}} \prod_{i_{1}<\cdots<i_{p}} \mathbb{E} \exp \left[\beta J_{i_{1}, \ldots, i_{p}} \sum_{a=1}^{n} S_{i_{1}}^{a} \cdots S_{i_{p}}^{a}\right]
$$

Now is a good time to remember that if $X \sim \mathcal{N}(0,1)$, then

$$
\begin{equation*}
\mathbb{E}_{X}\left[e^{\sigma X}\right]=\mathrm{e}^{\sigma^{2} / 2} \tag{2}
\end{equation*}
$$

We apply the previous result with $\sigma=\beta \sqrt{\frac{p!}{2 N^{p-1}}} \sum_{a=1}^{n} S_{i_{1}}^{a} \cdots S_{i_{p}}^{a}$:

$$
\begin{aligned}
\mathbb{E}\left[Z^{n}\right] & =\sum_{\mathbf{S}^{1}, \ldots, \mathbf{S}^{n}} \prod_{i_{1}<\cdots<i_{p}} \exp \left[\frac{1}{2} \beta^{2} \frac{p!}{2 N^{p-1}}\left(\sum_{a=1}^{n} S_{i_{1}}^{a} \cdots S_{i_{p}}^{a}\right)^{2}\right] \\
& =\sum_{\mathbf{S}^{1}, \ldots, \mathbf{S}^{n}} \exp \left[\frac{\beta^{2} p!}{4 N^{p-1}} \sum_{i_{1}<\cdots<i_{p}}\left(\sum_{a=1}^{n} S_{i_{1}}^{a} \cdots S_{i_{p}}^{a}\right)^{2}\right] \\
& =\sum_{\mathbf{S}^{1}, \ldots, \mathbf{S}^{n}} \exp \left[\frac{\beta^{2}}{4 N^{p-1}} \sum_{i_{1}, \ldots, i_{p}} \sum_{a, b=1}^{n} S_{i_{1}}^{a} \cdots S_{i_{p}}^{a} S_{i_{1}}^{b} \cdots S_{i_{p}}^{b}\right] \\
& =\sum_{\mathbf{S}^{1}, \ldots, \mathbf{S}^{n}} \exp \left[\frac{\beta^{2}}{4 N^{p-1}} \sum_{i_{1}, \ldots, i_{p}} \sum_{a, b=1}^{n}\left(S_{i_{1}}^{a} S_{i_{1}}^{b}\right) \cdots\left(S_{i_{p}}^{a} S_{i_{p}}^{b}\right)\right] \\
& =\sum_{\mathbf{S}^{1}, \ldots, \mathbf{S}^{n}} \exp \left[\frac{\beta^{2}}{4 N^{p-1}} \sum_{a, b=1}^{n}\left(\sum_{i=1}^{N} S_{i}^{a} S_{i}^{b}\right)^{p}\right]
\end{aligned}
$$

We can thus conclude:

$$
\begin{equation*}
\mathbb{E}\left[Z^{n}\right]=\sum_{\mathbf{S}^{1}, \ldots, \mathbf{S}^{n}} \exp \left[\frac{N \beta^{2}}{4} \sum_{a, b=1}^{n}\left(\frac{\mathbf{S}^{a} \cdot \mathbf{S}^{b}}{N}\right)^{p}\right] \tag{3}
\end{equation*}
$$

where $\mathbf{S}^{a} \cdot \mathbf{S}^{b}$ denotes an inner product.

3 Reminders on the Dirac distribution

For the replica trick, we need use the Dirac distribution δ, defined on any test function φ by $\langle\delta, \varphi\rangle=\varphi(0)$. It can also be written

$$
\int_{\mathbb{R}} \mathrm{d} x \delta(x) \varphi(x)=\varphi(0)
$$

What does a change of variable mean "inside" the Dirac distribution? We can deduce it from its action on the test function:

$$
\begin{equation*}
\int_{\mathbb{R}} \mathrm{d} x \delta(\gamma x-\mu) \varphi(x)=\int_{\mathbb{R}} \frac{\mathrm{d} y}{\gamma} \delta(y) \varphi\left(\frac{y+\mu}{\gamma}\right)=\frac{1}{\gamma} \varphi\left(\frac{\mu}{\gamma}\right) \tag{4}
\end{equation*}
$$

We also recall the following Fourier transform:

$$
\begin{equation*}
\delta(x)=\frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} \omega \mathrm{e}^{\mathrm{i} \omega x} \tag{5}
\end{equation*}
$$

4 Overlap formulation

We can work some more on Equation (3) by noting that the roles of a and b are symmetrical, except for the simple case $a=b$ where the replicas are aligned:

$$
\begin{align*}
\mathbb{E}\left[Z^{n}\right] & =\sum_{\mathbf{S}^{1}, \ldots, \mathbf{S}^{n}} \exp \left[\frac{N \beta^{2}}{4}\left(n+2 \sum_{a<b}\left(\frac{\mathbf{S}^{a} \cdot \mathbf{S}^{b}}{N}\right)^{p}\right)\right] \\
& =\sum_{\mathbf{S}^{1}, \ldots, \mathbf{S}^{n}} \exp \left[\frac{N \beta^{2} n}{4}\right] \prod_{a<b} \exp \left[\frac{N \beta^{2}}{2}\left(\frac{\mathbf{S}^{a} \cdot \mathbf{S}^{b}}{N}\right)^{p}\right] \tag{6}
\end{align*}
$$

We define the overlap $Q^{a b}$ between two configurations \mathbf{S}^{a} and \mathbf{S}^{b} as follows:

$$
Q^{a b}=\frac{\mathbf{S}^{a} \cdot \mathbf{S}^{b}}{N}
$$

And we want to use Equation (4) on the Dirac distribution, with

$$
\varphi(x)=\exp \left[\frac{N \beta^{2}}{2} x^{p}\right] \quad \mu=\mathbf{S}^{a} \cdot \mathbf{S}^{b} \quad \gamma=N
$$

On the one hand,

$$
\frac{1}{\gamma} \varphi\left(\frac{\mu}{\gamma}\right)=\frac{1}{N} \exp \left[\frac{N \beta^{2}}{2}\left(\frac{\mathbf{S}^{a} \cdot \mathbf{S}^{b}}{N}\right)^{p}\right]
$$

On the other hand,

$$
\int_{\mathbb{R}} \mathrm{d} x \delta(\gamma x-\mu) \varphi(x)=\int_{\mathbb{R}} \mathrm{d} Q^{a b} \exp \left[\frac{N \beta^{2}}{2}\left(Q^{a b}\right)^{p}\right] \delta\left(N Q^{a b}-\mathbf{S}^{a} \cdot \mathbf{S}^{b}\right)
$$

We plug this back into Equation (6):

$$
\mathbb{E}\left[Z^{n}\right]=\sum_{\mathbf{S}^{1}, \ldots, \mathbf{S}^{n}} \exp \left[\frac{N \beta^{2} n}{4}\right] \prod_{a<b} N \int_{\mathbb{R}} \mathrm{d} Q^{a b} \exp \left[\frac{N \beta^{2}}{2}\left(Q^{a b}\right)^{p}\right] \delta\left(N Q^{a b}-\mathbf{S}^{a} \cdot \mathbf{S}^{b}\right)
$$

Applying the Fourier transform of Equation (5) on top of this, we get:

$$
\begin{aligned}
\mathbb{E}\left[Z^{n}\right] & =\sum_{\mathbf{S}^{1}, \ldots, \mathbf{S}^{n}} \exp \left[\frac{N \beta^{2} n}{4}\right] \prod_{a<b} N \int_{\mathbb{R}} \mathrm{d} Q^{a b} \exp \left[\frac{N \beta^{2}}{2}\left(Q^{a b}\right)^{p}\right] \frac{1}{2 \pi} \int_{\mathbb{R}} \mathrm{d} \widehat{Q}^{a b} \exp \left[\mathrm{i} \widehat{Q}^{a b}\left(N Q^{a b}-\mathbf{S}^{a} \cdot \mathbf{S}^{b}\right)\right] \\
& =\sum_{\mathbf{S}^{1}, \ldots, \mathbf{S}^{n}}\left(\frac{N}{2 \pi}\right)^{\frac{n(n-1)}{2}} \iint \mathrm{~d} \mathbf{Q} \mathrm{~d} \widehat{\mathbf{Q}} \exp \left[\frac{N \beta^{2} n}{4}+\frac{N \beta^{2}}{2} \sum_{a<b}\left(Q^{a b}\right)^{p}+\mathrm{i} N \sum_{a<b} \widehat{Q}^{a b} Q^{a b}-\mathrm{i} \sum_{a<b} \widehat{Q}^{a b}\left(\mathbf{S}^{a} \cdot \mathbf{S}^{b}\right)\right] \\
& =\left(\frac{N}{2 \pi}\right)^{\frac{n(n-1)}{2}} \iint \mathrm{~d} \mathbf{Q} \mathrm{~d} \widehat{\mathbf{Q}} \exp \left[N\left(\frac{\beta^{2} n}{4}+\frac{\beta^{2}}{2} \sum_{a<b}\left(Q^{a b}\right)^{p}+\mathrm{i} \sum_{a<b} \widehat{Q}^{a b} Q^{a b}\right)\right] \sum_{\mathbf{S}^{1}, \ldots, \mathbf{S}^{n}} \exp \left[-\mathrm{i} \sum_{a<b} \widehat{Q}^{a b}\left(\mathbf{S}^{a} \cdot \mathbf{S}^{b}\right)\right]
\end{aligned}
$$

5 Saddle point

We rewrite the last factor as

$$
\begin{aligned}
\sum_{\mathbf{S}^{1}, \ldots, \mathbf{S}^{n}} \exp \left[-\mathrm{i} \sum_{a<b} \widehat{Q}^{a b}\left(\mathbf{S}^{a} \cdot \mathbf{S}^{b}\right)\right] & =\exp \left[N \frac{1}{N} \log \sum_{\mathbf{S}^{1}, \ldots, \mathbf{S}^{n}} \exp \left[-\mathrm{i} \sum_{a<b} \widehat{Q}^{a b}\left(\mathbf{S}^{a} \cdot \mathbf{S}^{b}\right)\right]\right] \\
& =\exp \left[N \frac{1}{N} \log \sum_{\mathbf{S}^{1}, \ldots, \mathbf{S}^{n}} \exp \left[-\mathrm{i} \sum_{a<b} \widehat{Q}^{a b} \sum_{i=1}^{N} S_{i}^{a} S_{i}^{b}\right]\right] \\
& =\exp \left[N \frac{1}{N} \log \sum_{\mathbf{S}^{1}, \ldots, \mathbf{S}^{n}} \prod_{i=1}^{N} \exp \left[-\mathrm{i} \sum_{a<b} \widehat{Q}^{a b} S_{i}^{a} S_{i}^{b}\right]\right] \\
& =\exp \left[N \frac{1}{N} \log \prod_{i=1}^{N} \sum_{S_{i}^{1}, \ldots, S_{i}^{n}} \exp \left[-\mathrm{i} \sum_{a<b} \widehat{Q}^{a b} S_{i}^{a} S_{i}^{b}\right]\right] \\
& =\exp \left[N \frac{1}{N} \log \left(\sum_{S^{1}, \ldots, S^{n}} \exp \left[-\mathrm{i} \sum_{a<b} \widehat{Q}^{a b} S^{a} S^{b}\right]\right)\right] \\
& =\exp \left[N \log \sum_{S^{1}, \ldots, S^{n}} \exp \left[-\mathrm{i} \sum_{a<b} \widehat{Q}^{a b} S^{a} S^{b}\right]\right]
\end{aligned}
$$

We can now conclude:

$$
\mathbb{E}\left[Z^{n}\right]=\left(\frac{N}{2 \pi}\right)^{\frac{n(n-1)}{2}} \iint \mathrm{~d} \mathbf{Q} \mathrm{~d} \widehat{\mathbf{Q}} \exp \left[-N G^{(n)}(\mathbf{Q}, \widehat{\mathbf{Q}})\right]
$$

where the function $G^{(n)}(\mathbf{Q}, \widehat{\mathbf{Q}})$ is given by

$$
\begin{equation*}
G^{(n)}(\mathbf{Q}, \widehat{\mathbf{Q}})=-\left(\frac{\beta^{2} n}{4}+\frac{\beta^{2}}{2} \sum_{a<b}\left(Q^{a b}\right)^{p}+\mathrm{i} \sum_{a<b} \widehat{Q}^{a b} Q^{a b}\right)-\log \sum_{S^{1}, \ldots, S^{n}} \exp \left[-\mathrm{i} \sum_{a<b} \widehat{Q}^{a b} S^{a} S^{b}\right] \tag{7}
\end{equation*}
$$

In the thermodynamic limit, we can apply the saddle point (or Laplace) approximation to get

$$
\begin{equation*}
\mathbb{E}\left[Z^{n}\right] \asymp \exp \left[-N G^{(n)}\left(\mathbf{Q}_{\star}^{(n)}, \widehat{\mathbf{Q}}_{\star}^{(n)}\right)\right] \tag{8}
\end{equation*}
$$

where the pair $\left(\mathbf{Q}_{\star}^{(n)}, \widehat{\mathbf{Q}}_{\star}^{(n)}\right)$ extremizes $G^{(n)}$ over the complex plane!

6 Replica symmetry

To find extremas of $G^{(n)}$, we make a replica symmetry Ansatz, and look for solutions of the form

$$
\forall a<b, \quad Q^{a b}=Q \quad \text { and } \quad \widehat{Q}^{a b}=\mathrm{i} \widehat{Q}
$$

This greatly simplifies Equation (7):

$$
G^{(n)}(Q, \widehat{Q})=-\frac{\beta^{2} n}{4}-\frac{\beta^{2}}{2} \frac{n(n-1)}{2} Q^{p}+\frac{n(n-1)}{2} \widehat{Q} Q-\log \sum_{S^{1}, \ldots, S^{n}} \exp \left[\widehat{Q} \sum_{a<b} S^{a} S^{b}\right]
$$

Now we need to decouple replicas in the last term by expressing it as $\mathrm{e}^{\sigma^{2} / 2}$. So we reinsert all the terms $a \geq b$ in the sum:

$$
\begin{aligned}
\exp \left[\widehat{Q} \sum_{a<b} S^{a} S^{b}\right] & =\exp \left[\frac{1}{2}\left(\widehat{Q} \sum_{a, b} S^{a} S^{b}-\widehat{Q} \sum_{a=b} S^{a} S^{b}\right)\right] \\
& =\exp \left[\frac{1}{2}\left(\sqrt{\widehat{Q}} \sum_{a} S^{a}\right)^{2}\right] \exp \left[-\frac{n}{2} \widehat{Q}\right]
\end{aligned}
$$

Now we apply Equation (2) with $c=1$ and $\sigma=\sqrt{\widehat{Q}} \sum_{a} S^{a}$: if $X \sim \mathcal{N}(0,1)$, then

$$
\begin{aligned}
\exp \left[\widehat{Q} \sum_{a<b} S^{a} S^{b}\right] & =\exp \left[-\frac{n}{2} \widehat{Q}\right] \mathbb{E}_{X} \exp \left[\left(\sqrt{\widehat{Q}} \sum_{a} S^{a}\right) X\right] \\
& =\exp \left[-\frac{n}{2} \widehat{Q}\right] \mathbb{E}_{X} \prod_{a} \exp \left[\sqrt{\widehat{Q}} S^{a} X\right]
\end{aligned}
$$

We can now simplify the log term:

$$
\begin{aligned}
\log \sum_{S^{1}, \ldots, S^{n}} \exp \left[\widehat{Q} \sum_{a<b} S^{a} S^{b}\right] & =-\frac{n}{2} \widehat{Q}+\log \sum_{S^{1}, \ldots, S^{n}} \mathbb{E}_{X} \prod_{a} \exp \left[\sqrt{\widehat{Q}} S^{a} X\right] \\
& =-\frac{n}{2} \widehat{Q}+\log \mathbb{E}_{X}\left[\prod_{a} \sum_{S^{a} \in\{ \pm 1\}} \exp \left[\sqrt{\widehat{Q}} S^{a} X\right]\right] \\
& =-\frac{n}{2} \widehat{Q}+\log \mathbb{E}_{X}\left[\prod_{a} 2 \cosh (\sqrt{\widehat{Q}} X)\right] \\
& =-\frac{n}{2} \widehat{Q}+\log \mathbb{E}_{X}\left[(2 \cosh (\sqrt{\widehat{Q}} X))^{n}\right]
\end{aligned}
$$

And we obtain our final expression for $G^{(n)}$:

$$
G^{(n)}(Q, \widehat{Q})=-\frac{\beta^{2} n}{4}-\frac{\beta^{2}}{2} \frac{n(n-1)}{2} Q^{p}+\frac{n(n-1)}{2} \widehat{Q} Q+\frac{n}{2} \widehat{Q}-\log \mathbb{E}_{X}\left[(2 \cosh (\sqrt{\widehat{Q}} X))^{n}\right]
$$

7 Taking the limit

Since we will take $n \rightarrow 0$, we can exploit a first replica trick to approximate $G^{(n)}$. For our random variable $Y=2 \cosh [\sqrt{\widehat{Q}} X]$,

$$
\mathbb{E}\left[Y^{n}\right]=\mathbb{E}\left[\mathrm{e}^{n \log Y}\right]=\mathbb{E}[1+n \log Y+o(n)]=1+n \mathbb{E}[\log Y]+o(n)=\mathrm{e}^{n \mathbb{E}[\log Y]}+o(n)
$$

and so by taking the logarithm,

$$
\log \mathbb{E}\left[Y^{n}\right]=n \mathbb{E}[\log Y]+o(n)
$$

In other words,

$$
\begin{equation*}
G^{(n)}(Q, \widehat{Q})=-\frac{\beta^{2} n}{4}-\frac{\beta^{2}}{2} \frac{n(n-1)}{2} Q^{p}+\frac{n(n-1)}{2} \widehat{Q} Q+\frac{n}{2} \widehat{Q}-n \mathbb{E}_{X}[\log (2 \cosh (\sqrt{\widehat{Q}} X))]+o(n) \tag{9}
\end{equation*}
$$

We combine the replica free entropy of Equation (1) with the saddle point approximation of Equation (8). From now on we are very careless with the order of limits:

$$
\Phi_{\mathrm{RS}} \approx \lim _{\substack{N \rightarrow \infty \\ n \rightarrow 0}} \frac{\exp \left[-N G^{(n)}\left(Q_{\star}^{(n)}, \widehat{Q}_{\star}^{(n)}\right)\right]-1}{n N}
$$

Since we know now that $G^{(n)}(Q, \widehat{Q})=O(n)$ goes to 0 with n, we use the Taylor expansion and get rid of the N 's:

$$
\Phi_{\mathrm{RS}} \approx \lim _{n \rightarrow 0} \frac{-G^{(n)}\left(Q_{\star}^{(n)}, \widehat{Q}_{\star}^{(n)}\right)}{n}=:-G\left(Q_{\star}, \widehat{Q}_{\star}\right)
$$

8 Extremization

The limit function is easily obtained from Equation 9

$$
G(Q, \widehat{Q})=-\frac{\beta^{2}}{4}+\frac{\beta^{2}}{4} Q^{p}-\frac{1}{2} \widehat{Q} Q+\frac{1}{2} \widehat{Q}-\mathbb{E}_{X}[\log (2 \cosh (\sqrt{\widehat{Q}} X))]
$$

To find its extremizers $\left(Q_{\star}, \widehat{Q}_{\star}\right)$, we compute and cancel out partial derivatives:

$$
\begin{aligned}
\frac{\partial G}{\partial Q} & =\frac{\beta^{2}}{4} p Q^{p-1}-\frac{1}{2} \widehat{Q} \\
\frac{\partial G}{\partial \widehat{Q}} & =-\frac{1}{2} Q+\frac{1}{2}-\frac{1}{2 \sqrt{\widehat{Q}}} \mathbb{E}_{X}[X \tanh (\sqrt{\widehat{Q}} X)]
\end{aligned}
$$

We get two fixed point equations:

$$
\begin{aligned}
& \widehat{Q}=\frac{\beta^{2}}{2} p Q^{p-1} \\
& Q=1-\frac{1}{\sqrt{\widehat{Q}}} \mathbb{E}_{X}[X \tanh (\sqrt{\widehat{Q}} X)]
\end{aligned}
$$

We don't have analytical expressions, but we notice that $\left(Q_{\star}, \widehat{Q}_{\star}\right)=(0,0)$ always satifies these conditions, leading to

$$
\Phi_{\mathrm{RS}}=-\left(-\frac{\beta^{2}}{4}-\log 2\right)
$$

whenever this trivial solution is the right extremizer.

9 Link with the REM

Compare first two moments as $p \rightarrow \infty$

